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Abstract

HyBoLT was a Hypersonic Boundary Layer Transition flight experiment funded by
the Hypersonics Project of the Fundamental Aeronautics Program in NASA’s
Aeronautics Research Mission Directorate. The HyBoLT test article mounted on the top
of the ALV X-1 rocket was launched from Virginia’s Wallops Island on August 22, 2008.
Unfortunately a problem in the rocket’s flight control system caused the vehicle to veer
off the designed flight course. Launch officials activated a self-destruct mechanism in the
rocket’s nose cone after 20 seconds into flight. This report is a closeout document about
the HyBoLT flight experiment. Details are provided of the objectives and approach
associated with this experimental program as well as the 20 seconds flight data acquired
before the vehicle was destroyed.
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1. Introduction

Hypersonic boundary layer transition is a critically important discipline with potential impact on all future
designs for high-speed applications. For instance, a spacecraft entering Earth’s atmosphere initially experiences a
heating environment associated with a laminar boundary layer. Eventually, as the atmosphere becomes denser
and/or the vehicle surface becomes rougher, the boundary layer becomes turbulent and the heating rate at the surface
can increase by a factor four or more. Our ability to understand and predict when this transition to turbulence and
higher heating will occur has design implications for the thermal protection system (TPS) needed to protect the
vehicle and crew during entry. Typically TPS designers try to use a conservative approach such as using an all-
turbulent heating profile to select material and size thickness, as was adopted for some of the recent X-vehicle
designs (for instance X-34") and more recently for the Crew Exploration Vehicle (CEV). One advantage of an all-
turbulent design approach is that it avoids the issues associated with having to define boundary layer transition
criteria. For the CEV the all-turbulent approach provides the means to assess initial TPS concepts. However, as
vehicle designs mature, quantification of when (during flight) the boundary layer will transition to the higher heating
rates will typically allow for reduced TPS weight and thus have a direct impact on the final design.

For smooth bodies, the transition process can generally be computationally modeled for simple shapes thanks to
progress made on understanding the physical instability mechanisms within laminar boundary layers.> Boundary
layer disturbances, either excited by the outside environment (receptivity of pressure, velocity, or temperature
fluctuations) or the surface (roughness), can exponentially grow (as wave-like structures) causing the eventual
breakdown to turbulence. Computational tools are now available® to determine if and when these instability waves
(primarily Tollmien-Schlichting, crossflow, or Gortler type disturbances) will evolve to secondary and/or non-linear
instabilities and then breakdown to turbulence. These computational tools simulate the physical processes within
the laminar boundary layer, but still must be calibrated against actual data. In the absence of large boundary layer
modifiers (extreme roughness or noise) that encourage bypass mechanisms, stability calculations have been shown
(by comparison to both ground-based and flight data) to accurately predict transition onset.* Furthermore, recent
advances’ have tried to account for small (or subcritical) distributed roughness as inputs to the transition prediction
model, although the transient growth theory has not yet had the opportunity to be compared against flight results.

Most flight programs account for the vehicle surface roughness, as dictated by the state of the TPS, in
development and application of a boundary layer transition criteria. The TPS roughness plays an integral role in
determining the probable transition onset time during reentry. Most spacecraft designed for reentry have some form
of inherent surface roughness, whether in the form of misaligned TPS tiles on the Shuttle Orbiters or, in the case of
TPS designed for planetary entry or lunar return, irregularities on the surface formed during entry by ablation and/or
spallation due to extremely high surface temperatures. Traditional ceramic-based TPS tiles such as those used on
the Orbiters are susceptible to inadvertent roughness such as damage from launch in the form of cavities and/or gap
filler protrusions. The inherent roughness is usually of a distributed nature, characteristically small and abundant.
The inadvertent roughness is usually of a discrete nature, typically much larger in scale than distributed and isolated
(or infrequent). For the Space Shuttle Orbiters, the slight misalignments (steps and gaps) between windward
acreage TPS tiles represent the background distributed-roughness that in the absence of any large discrete trips will
induce boundary layer transition at a Mach number on the order of 8. On two occasions (STS-28 and 73) the
Orbiters have experienced early boundary layer transition at Mach numbers nearer to 18 as a result of large
protruding gap fillers.

As a result of the Columbia accident investigation, a concerted effort was expended, in support of the Shuttle
Orbiter Return-to-Flight (RTF) program, on a boundary layer transition (BLT) prediction tool® that is now part of a
suite of engineering tools for assessing damage to the TPS. The group of analytic tools was developed for real-time
mission support in the event of observed TPS damage, in order to determine if the vehicle is safe to fly as is, or if
repair is required.” The BLT Tool calculates the expected time of boundary layer transition during entry based on
observed damage and/or repair locations and geometries. The program includes a database of computed boundary
layer parameters that cover a range of nominal trajectories for entry and utilizes an interpolation tool to extract
specific local properties for determining the boundary layer state during the mission trajectory.® The BLT Tool is
provided as a first step with which to establish the proper heating environment to baseline for the Cavity and
Protuberance Heating tools. Calibration of the BLT Tool has been carried out by comparison of predicted transition
results to several of the historical high Mach number flight cases.’



Prior to STS-114, the issue of protruding gap fillers (discrete roughness) was viewed within the Shuttle
community to be mainly of engineering interest as opposed to a safety of flight issue. Two large protrusions were
identified during the mission'® that were significantly larger than those previously found on post-flight ground
inspections. The resulting BLT Tool prediction times were thus much earlier than any historical precedent that
represents the basis for the assessing the aeroheating environments for the flight. Recognizing that a large
uncertainty was associated with BLT predictions outside of prior experience, the Shuttle program decided it was
safer to perform a risky in-space repair (to send an astronaut out to remove the gap fillers) instead of reentering with
the gap fillers left in place. A post-flight close call investigation report, dated Nov. 28, 2005, states: “reducing BLT
prediction uncertainty only marginally through targeted tests and/or analysis, if technically feasible and
programmatically affordable (in both time and money), might provide the data necessary to allow an otherwise
inconclusive assessment to be shown as acceptable for entry as-is. Such additional test and analyses seem prudent to
provide helpful data in making a risk-risk trade when the choice is not as simple as that which was presented by the
[protruding gap fillers] on STS-114." The present fundamental hypersonics experimental effort was established
with this last statement in mind, with the hope of providing critical boundary layer transition data for validating
and/or calibrating existing simulation and engineering tools.

2. Mission Objectives

A flight of opportunity was provided through the termination of a scramjet-powered test vehicle that was to be
the primary payload with the initial launch by ATK of a multi-stage rocket, the ALV X-1. The original offer was a
ride of the Scramjet Flight Experiment (SFX) in exchange for NASA providing range support and launch-
indemnification. NASA terminated the SFX program in March 2006 due to cost and schedule concerns, which left
the ALV X-1 without a primary payload for the front of the rocket. The HyBoLT flight experiment developed as a
replacement for SFX with the goal of having minimal impact to the ALV X-1 launch schedule. The ALV X-1 was
originally scheduled to launch from NASA Wallops Flight Facility (WFF) on the northeastern shore of Virginia in
fall of 2006. However, the launch date was postponed several times due to many unforeseeable technical issues.
ALYV X-1 was finally launched on August 22, 2008. Figure 1 shows a photograph of HyBoL'T mounted on the top of
the ALV X-1 rocket as it lifted off at the WFF Launch Pad OB. The flight experiment had two separate sides with
independent objectives, with one side being dedicated to investigating smooth wall transition (referred to as Side A)
and the other discrete roughness transition (Side B).

3. Vehicle Constraints and Geometry

To minimize launch schedule impacts (and at the same time maximize the return on investment with the
cancelled program), the decision was made to utilize the SFX nose cone design. This mature design had already
gone through several detailed reviews. Any deviation from the SFX nose shape would have meant a new design and
qualification effort and thus an immediate delay to the launch schedule. The nose geometry that was adopted by
HyBoLT is shown in Figure 2, a conceptual image during launch. The forebody was a 6° half-angle wedge shape
with semi-conical contour on both shoulders. The leading edge had a radius of 0.15 inches. The experimental
surfaces of interest, shown in copper color, were %-inch thick flat copper plates that extended downstream from the
leading edge a total of 90 inches. The white color regions in the sketch were aluminum structure protected by cork
ablative insulation. The two flat wedge surfaces, each bounded between the conical shoulders, provided the two
independent sides that constitute the HyBoLT flight experiment. HyBoLT was attached to the ATK launch vehicle
(ALV X-1) with an aft module and booster adapter.

The flight profile for the multi-stage ALV X-1 rocket is shown in Figure 3. The rocket was designed to have a
gross weight of 43,000 lbs., a length of 54 ft., a diameter of 50 in., and was expected to achieve a maximum Mach
number of 11.4 and altitude of 275 nautical miles. The HyBoLT nose cone stayed attached to the ALV X-1 through
second-stage burn out with separation at 158 seconds after lift-off. HyBoLT was not designed to be recoverable and
splashdown was planned for the Atlantic ocean, northeast of Antigua. The critical data collection window for
HyBoLT was the first 65 seconds, as shown in Figure 4 along with key trajectory analysis points, which are also



listed in Table 1. The nominal angle of attack planned was nearly zero throughout the flight profile so that both
sides would experience similar environments. Figure 5 shows a trajectory outlook of the vehicle orientation. Side A
is on the skyward side (compression side) and Side B on the groundward side (expansion side) of the vehicle.

HyBoLT had a dedicated data acquisition and telemetry system that included on-board processing to provide
compression of high-frequency content to allow all data to fit within telemetry reception limits. Details of the
instrumentation will be discussed in greater detail in the sections to follow. Additional important measurements for
the flight (for instance, Mach number, Reynolds number, and angle of attack) were to be obtained from post-flight
“best-estimated trajectory” reconstruction of the entire integrated rocket data obtained from (1) the ALV-X1
telemetry which includes an inertial navigation system; and/or (2) ground-based radar tracking facilities.

4. Science Objectives and Experimental Design

4.1 Side A Natural Transition

The objective for Side A was to obtain hypersonic boundary layer transition data to be used to understand
natural transition flow physics and for code validation. To support this activity, in-flight measurement of smooth
wall transition characteristics (transition front movement, disturbance frequencies and movement, and boundary
layer profiles) and freestream disturbance levels were planned. To insure that the measured transition onset results
would be in close agreement with the predictions based on stability theory*, strict smoothness requirements were
specified for Side A: surface finish of 16 y-in RMS over the first 40-in and 32 u-in RMS thereafter; no forward
facing steps, only aft facing steps of 0.01-in or less; no gaps over the first 60-in and the maximum allowable gap
thereafter (to allow for thermal growth) was restricted to 0.10-in; and for waviness, only 0.00025-in over 0.5-in for
short waves and 0.005-in over 6-in for long waves were allowed.

4.1.1 Transition Prediction

Transition predictions based on boundary layer stability computations (unpublished work by Dr. Balakumar
using the eM™* code'") indicated that, due to pressure gradients produced by the leading edge corner and conical
shoulder, transition on HyBoLT Side A would be dominated by crossflow instabilities occurring off-centerline in the
Mach number range of 2.5 to 4.5 with the unit Reynolds number changing from 7.8x10%ft to 2.5x10%ft. The
transition stability analysis also indicated that, due to the combined effects of cold wall and leading edge bluntness,
the growth of 1* or 2™ mode Tollmien-Schlichting waves were not expected to be significant enough to cause
boundary layer transition anywhere on Side A up to Mach 8 during the flight. Therefore, the experimental plan for
Side A is mainly concentrated to characterize crossflow instabilities.

Figure 6 shows the HyBoLT coordinate system in a viewpoint of forward looking aft with ¥ and Z depicted but
X is referenced from the virtual leading edge — positive in the aft direction. The HyBoLT coordinates use a left
handed coordinate system in order to match the Y and Z coordinates of ALV. Because of symmetry, transition
prediction results are plotted on the upper half (positive Y) only in Figure 7, which shows the top view of Side A.
Note that the coordinate is stretched in the Y-direction in this plot. The virtual leading edge (if sharp) is located at
X=0 inch while the actual blunt leading edge is at X=1.285 inches. The trapezoidal region bounded between two
inclined red lines from the leading edge to 90.0 inches is the flat plate portion of the copper experimental plate. This
plot shows for Side A the predicted transition front movement as a function of Mach number. The solid green lines
represent the local streamlines in this outboard region, while the dashed red lines represent constant values of
disturbance growth (N-factors between 6 and 11). Since most of the predicted transition front locations for Mach
3.0 and 4.2 take place on the outboard portion of the flat section, the critical transition detection sensors were
concentrated in this region for the Side A experiment. Note that for Mach 5.5, transition was predicted to occur on
the conical shoulders, which were covered by surface thermal insulation (outboard of the blue lines in Figure 7) that
prevented our acquiring any meaningful transition data at this location.



4.1.2 Instrumentation

The goals for the Side A experiment were to measure boundary layer transition locations, fluctuation intensities,
disturbance frequencies and propagation speeds and directions, plus boundary conditions that consist of surface
temperature distributions, surface pressure distributions, boundary layer profiles, and flow directions. An array of
surface flush mounted thermocouples were installed to provide transition front movement data. Specially designed
surface hot-film sensors were included to detect stationary and/or traveling waves. In addition, dynamic pressure
sensor arrays were included to provide phase angle and phase velocity information of any traveling waves.

The instrumentation layout for HyBoLT Side A is shown in Figure 8. Side A instrumentation includes both
low- and high-frequency sensors. The low-frequency sensors were sampled at 300 samples per second (sps) or
slower and provide time-averaged observations of transition location, surface pressure distribution, boundary layer
profile, and flow direction. High-frequency sensors were sampled at either 20 kHz or 100 kHz and were intended to
identify frequencies, wave propagation speeds, direction and types of crossflow instabilities in order to determine
the reasons for changes in the time-averaged observations.

4.1.2.a Low-frequency instrumentation

An array of 77 thermocouples was included to perform transition front mapping. All thermocouples were
surface flush-mounted except one located just under the surface on the HyBoLT leading edge. A total of 22 surface
static pressure ports were distributed on the shoulder sides and downstream of the sensor layout region to avoid any
possibility of contamination of disturbances from these pressure ports. Two pairs of pressure ports along the
centerline on Side A and Side B were used to collect differential pressures for independent verification of the ALV
X-1 angle of attack, «, during the flight test. Another two pairs of pressure ports on the opposite shoulder edges
were used to measure the angle of yaw, 8. A ‘probeless’ pressure rake, as shown in Figure 9, approximately 2-in
high by 0.5-in wide by 2-in long was used to measure the boundary layer profile. A pair of pressure ports on the
rake’s opposite wedge side surfaces was used to determine the mean flow direction towards the top of the boundary
layer. A second version of this boundary layer rake was located on centerline of Side B.

4.1.2.b High-frequency instrumentation

A dynamic pressure probe stand equipped with a high frequency dynamic pressure transducer (2.5-in high by
0.75-in wide by 1.625-in long), as shown in Figure 10, was used to monitor the freestream disturbance levels outside
the boundary layer. The tip of the transducer was recessed 0.175 inches from the front surface and protected by a
ceramic sleeve to alleviate heat load damage to the sensing element.

Six dynamic pressure transducers aligned in a row and flush mounted on the port side (negative Y) at X=20
inches, as shown in Figure 8, were used to monitor any possible disturbances coming from the leading edge corner.
Another four dynamic pressure transducers were distributed near the edge of the experimental plate to monitor
surface pressure fluctuations. Two three-dynamic-pressure gages were located in the crossflow region. Each gage
had three dynamic pressure transducers, as shown in Figure 11, that were arranged in a triangular formation at a
spacing of less than one wavelength of a crossflow vortex. The top surface was flush mounted at locations on the
starboard and port sides of the experimental plate and were designed to measure the wave velocity and direction
(phase velocity) of crossflow instabilities.

Surface hot-film gages that have three active filaments located inside one wavelength (predicted for crossflow
disturbance) along the sensor centerline and three passive filaments distributed on the top surface of a quartz plug
are shown in Figure 12 with an accompanying photograph. Two of these hot-film sensors were located in the
predicted crossflow region and were designed to determine the crossflow instability (stationary or traveling)
characteristics. The function of the passive filaments was to measure local surface temperatures for adjustment of
proper compensation of the active filaments. The hot-film gages were also planned to be used to detect the
occurrence of boundary layer transition by the change of RMS levels of their AC output.



The final high frequency measurement was a one-axis vibrometer (Z-axis, 100 kHz) that was used to monitor
the vibration of the experimental plate. All high-frequency content was processed onboard to compress the data to
the SMbits/sec telemetry bandwidth limit. The processed data included spectral averaging of amplitude spectra,
correlations in space, and statistics, to be used to document the physics of the transition process as completely as
possible. Since transition physics changes appreciably as the Mach number increases, any real-time analysis had to
be accomplished within the timestep equivalent of a change in Mach number of 0.02; that is, within 104
milliseconds (ms). One selected SkHz channel was downlinked in total to the ground station for post-flight post-
processing to verify onboard data processing.

4.2 Side B Roughness Transition

HyBoLT Side B was proposed to provide flight data comparing the relative effectiveness of various boundary
layer (BL) trips relevant to the Shuttle Return to Flight (RTF) program. The Side B science objective was to obtain
hypersonic boundary layer data from a known fixed transition position using boundary layer trips representative of
damage (protrusions or cavities) to Shuttle Thermal Protection System (TPS). These data were intended to support
engineering code validation for the RTF BLT tool. °

The Side B roughness experiment had three separate discrete BL trips selected for side-by-side comparison.
Two trips were used to compare protuberances of the same height (a gap filler type representing flight versus a
ground-based “pizza box”) and the third trip was a cavity designed (based on ground data) to trip at nearly the same
point in the trajectory as the protuberances. The gap filler and cavity represent realistic damage scenarios for the
Shuttle program and the new in-flight assessment capability developed as a result of the Columbia accident
investigation. The cavity was located on centerline, while the protuberances were placed 5-in on either side of
centerline, all at the trip station 20 inches back from the leading edge, as shown in Figure 13. These three BL trips
were all designed and machined as an integral part of the flat copper plate used for the Side B assembly.

4.2.1 Trip Sizing

The trips used for HyBoLT Side B were sized based on the approach and methodology of the RTF BLT Tool
Version 1.° For protuberances, the trip height (k) is predicted, based on a two-sigma confidence level, to initiate the
onset of transition based on 27 times the boundary layer thickness (6) divided by the momentum thickness Reynolds
number over the edge Mach number (Rey/M,). A similar correlation for cavities was generated from the ground-
based data'” as part of an update to Version 2 the BLT Tool" using the cavity volume (V). The local parameters
used to generate the RTF BLT correlations were based on the engineering code, LATCH', while the present
HyBoLT parameters used to size the trips are based on viscous CFD solutions. The inconsistency between
correlation development and application was initially acceptable due to the relative nature of the resulting data.
Based on the ground-based data and correlations, the transition front movement behind all three trips was expected
to begin at about the same time during flight and the absolute time in comparison to expectations was less important.
The impact of using viscous CFD solutions for extracting the local properties will be further investigated as the RTF
BLT Tool is upgraded to Version 2, which is based solely on a CFD database.

Tables 2 and 3 provide the local boundary layer edge properties extracted from the CFD solutions for the
nominal trajectory at the trip locations. The relevant parametric space for the Orbiter is values of Re /M, between 50
and 200 (with M, on the order of 2.8) and values of k/d between 0.2 and 1.2. A quick scan of the trajectory points
shown in Tables 2 and 3 reveal that Shuttle-like edge Mach numbers (roughly M,=2.8) are obtained at the trip
locations between Mach 6.5 and 7.5. The corresponding Re,/M, for these trajectory points are between 80 and 130,
which are in the range of interest for Shuttle. Tables 4 and 5 provide the calculated trip dimensions obtained using
the RTF BLT Tool methodologies corresponding to local properties listed in Tables 2 and 3, respectively. Based on
feedback from the manufacturer on the largest trip height that can be built integral to the copper surface, 0.0683-in
protuberances at Y=+5-in were selected (see Table 5), which corresponds to the Mach 7 trajectory point and a k/d of
0.2724. The matching cavity based on the RTF ground-based data for the centerline at X=20-in is length 2.749-in,
depth 0.377-in, and width 0.916-in (see Table 4). These dimensions were selected based on feedback from the RTF
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Cavity Heating Team who recommended a cavity with a length-to-depth ratio of L/D=7.3. Note, since Version 1 of
the RTF BLT Tool, as mentioned earlier, is based on the LATCH engineering code and not the GASP code used
here, these calculated dimensions cannot be considered exact and analysis continues to define the exact scaling
between the two codes. For this reason, rounding off of the calculated dimensions to two significant digits seemed
appropriate. The final height dimension for both protuberances was 0.07-in. The final cavity dimensions were 2.75-
in length, 0.38-in depth, and 0.92-in width.

4.2.2 Instrumentation

The surface thermocouple layout, shown in Figures 14 and 15, was primarily dedicated to provide adequate
coverage for identifying the movement of transition during the flight. Of the 99 surface thermocouples, 82 sensors
were intended for identifying the transition onset on the face of the wedge, four sensors were on the shoulder
regions, and the remaining 13 sensors were located in and around the BL trips (shown in the inset of Figure 14).
The sensors in the vicinity of the trips were to obtain local heating information during the flight. For the
protuberances, one thermocouple was placed on the top center of the “pizza box”, while another was placed in front
of the “gap filler”, both with two additional sensors behind each element at X=21 and 22-in. On the cavity floor, a
distribution of sensors is placed along the centerline at X = 20.5, 21, 21.5, 22, and 22.5-in, while two are placed at Y
= +0.35-in at X = 22.25-in. All Side B sensors are considered low-frequency instrumentation, sampled at 100 sps
(all thermocouples, including those on Side A, are sampled at this lower rate).

5. Verification of Instruments and Sensor Functions by Flight Data

HyBoLT, mounted on the top of the ALV X-1 rocket, was launched from the Launch Pad OB at Wallops Flight
Facility of NASA Goddard Space flight Center, Wallops Island, Virginia at 5:10 am EDT on August 22, 2008.
Unfortunately a problem in the flight control system caused the vehicle to veer off the designed flight course.
Launch officials activated a self-destruct mechanism in the rocket’s nose cone after 20 seconds into the flight.
Figure 16 shows that the Mach number and the Reynolds number only reached approximately Mach 1 and 9x10° per
foot respectively, at the end of flight. These flight conditions were far below the designed test conditions and no
boundary layer transition was observed in this flight range. Although the angle of attack, a, the angle of yaw, 3, and
the total angle of attack, a,,, approached the designed zero angle during the flight, they never stabilized, as shown
in Figure 17. Therefore, the flight data from the HyBoLT instrumentation and sensors will not provide any useful
information to serve the original designed scientific objectives. All data presented in this report only provide
verification of the functioning of the onboard instruments and sensors.

Detailed instrument lists for Side A and Side B are summarized in Tables 6 and 7, respectively. Additional
miscellaneous instruments, such as the vibrometer, accelerometers, differential pressure gauges, secondary pressure
gauges, isothermal blocks for the thermocouple reference temperature, etc., are listed in Table 8. Cross-reference to
instruments by the ID name used in these tables will facilitate the following discussions of HyBoLT data. Most of
the HyBoLT data are presented in engineering units in terms of temperatures (°F), pressures (psia), etc., except the
hot-film data is in milli-volts (mV) or volts (V). Because of lack of scientific value, further data reduction to get
physical quantities, such as flow velocities, flow angles, Mach numbers and Reynolds numbers, etc., has not been
pursued. All data presented in the following sections are during (70-10s) to (70+20s), where 70 is the ALV X-1
rocket liftoff time, i.e., flight time zero.

5.1 Thermocouple Data

All thermocouple data for Side A and Side B are presented in Figures 18a-18i and 19a-19k, respectively. During
the pre-launch sensor verification check, five thermocouples had been noted as being suspect: TA045, TA056,
TB006, TB052, and TB099, while four others were deemed questionable: TA035, TB039, TB065, and TB094. Of
those only four were identified as bad thermocouples during flight, TAO35 in Figure 18d, TA056 in Figure 18g,
TBO006 in Figure 19a and TB065 in Figure 19h. Generally all thermocouples indicate a steady and rapid temperature
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rise approximately 12 seconds after liftoff. But, only the thermocouples on Side B show a jump up about 0.1 °F
around 1 second after liftoff. This small temperature jump is thought to be attributed to an electronic instrumentation
glitch caused by improper grounding between the thermocouples and the isothermal reference blocks. During pre-
launch checks, these grounding issues were noted during power switching activities. It is believed that an internal
power switch occurred at around that time during launch. Table 9 shows the connection scheme of thermocouples to
the reference temperature blocks. Totally sixteen reference temperature blocks were used with eleven thermocouples
connected to each block separately. The reference temperature readings from each block are plotted in Figures 20a
and 20b. For some unknown reasons, the reference temperature blocks, TRTC11, TRTC12, TRTC15 and TRTC16,
show about 2 °F higher readings than others as indicated in Figure 20b and noted in Table 9. Higher reference
temperatures cause the thermocouples connected to these blocks to read about 8 °F higher than normal. A spread of
less than 2 °F is within the experimental uncertainty for these Type-T thermocouples, but the 8 °F spread is likely
due to the anomalies with the suspect isothermal blocks. Such anomalies in the reference temperature blocks should
be investigated for future tests.

5.2 Surface Static Pressure Data

There are 14 surface static pressure ports on Side A with 7 each on the starboard (positive Y) and port (negative
Y) sides and none Side B. As shown in Figures 21a and 21b, all surface static pressures were decreasing smoothly
after liftoff until about 3 seconds (70+17s) before the vehicle destruction. Afterward, the extraneous pressure
readings indicate that the vehicle underwent erratic motions just moment before the end of flight. Also, the surface
static pressure pattern is not symmetric on the starboard and port sides. That is probably attributed to the nonzero
angle of yaw, as shown in Figure 22a and further discussed in the next section.

5.3 Differential Pressure Data for Angle of Attack and Angle of Yaw

The directly measured differential pressure data PAOAO1 and PAOAO?2 for the angle of attack, o, and PYAWO1
and PYAWO?2 for the angle of yaw, (3, are plotted in Figure 22a along with the computed differential pressures
DpAOAL1 and DpAOA2 for a and DpAOY1 and DpAOY2 for § computed from the surface static pressures. The
individual static pressures are shown in Figure 22b, for the corresponding pairs of pressure ports. Their relationships
are listed in Table 10. It is suspected that PSBO2 and PSA17 had insufficient zero offsets as indicated by their
relatively low readings before approximately (70+5s), as shown in Figure 22b. That, in turn, causes relatively low
computed DpAOA2 and DpAOY'1 at the flight time less than (T0+5s), as shown in Figure 22a. Also, it is suspected
that there might have been a leak in the tube connections for PAOA(O2, PSB02 and PSB02S. Note that these three
pressure transducers were connected to the same surface pressure port by split junctions. A leak in the tube
connection would cause higher correspondent readings than those of PAOAO1 (or, DpAOAL) in Figure 22a and
PSBO1 in Figure 22b at the flight time greater than (70+13s). The vehicle erratic motion before the end of flight
discussed previously is also observed in these data.

5.4 Boundary-Layer Pressure Rake Data

There were two ‘probeless’ boundary-layer pressure rakes, with one on each side, installed on HyBoLT. The one
on Side A is off centerline at Y = +4.0 inches and the other one on Side B is on the centerline. Both rakes were
located at X = 85.0 inches from the virtual leading edge. Figures 23a and 23b show the time traces of total pressures
measured by the rake on Side A and Side B, respectively. The total pressure data measured by the Side A rake
appear to reveal the vehicle’s erratic motion before the end of flight but not by the Side B data.

The boundary-layer profiles in terms of total pressures measured by the pressures rakes are plotted in Figures
24a to 24e for flight times at (70+5.00s), (T0+10.00s), (T0+15.00s), (T0+18.20s), and (70+20.15s), respectively. It
shows the boundary layer thickness increasing with the flight time becoming larger than the height of the pressure
rake on Side A, i.e., under expansion with a positive angle of attack as shown in Figure 22a, approaching to the end
of flight.
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5.5 Differential Pressure Data for Flow Angle at Boundary-Layer Pressure Rakes

The flow angles, ¢, and ¢, at the boundary-layer pressure rakes on Side A and Side B, represented by the
measured differential pressure data PRSA11 and PRSBOI are plotted in Figure 25 along with the differential
pressures DPRSA and DPRSB. The individual pressures that are used to compute DPRSA and DPRSB are also
shown in the figure. Their relationships are listed in Table 11. The measured and the computed differential pressures
represented by lines and symbols, respectively, match to each other quiet well. Except for the time period
approximately from (70+16.2s) to (T0+18.8s), the differential pressure transducer for PRSA11 was over range (+/-5
psid). Also, the pressure readings of PRSA12 (25 psia gauge) and its spare PRSA1S (75 psia gauge) match to each
other very well. All these data showing a negative flow angle indicate that the vehicle was turning to the right
(starboard) during the flight.

5.6 Acceleration Data

Figure 26 presents the vehicle acceleration data measured by the 3-axis accelerometers installed under the
surface. Before takeoff, the vehicle axial direction (X-axis) was normal to the ground surface and the X-axis
accelerometer read 1 G. During the flight, the major acceleration was along the vehicle axial direction.

5.7 Surface Hot-Film Data

There were two surface hot-film gages, with one located in the Mach 3 zone and another one in the Mach 4.2
zone of the predicted crossflow transition regions. Figure 27 presents the DC voltage outputs from different sensing
filaments on each gage. Before takeoff, the different levels of the DC voltage output were attributed to the different
inherent resistance associated with each individual sensing filament. Generally, all sensing filaments showed
increasing DC voltage outputs during the flight, except HF3P52. Also, the DC voltage outputs of HF3P51, HF3P52
and HF3P53 showed a flat drop from (70+8.3s) to (70+10.8s). These observations could be related to the measured
hot-film AC signals. Figures 28a, 28b, 29a and 29b present the selected hot-film time series data and Figures 30a
and 30b present the standard deviation data. It is indicated that HF3A52, as shown in Figures 29b and 30b, is not so
sensitive in response to air flow fluctuations as compared to other sensing filaments. The flat drop of DC voltage
outputs of HF3P51, HF3P52 and HF3P53 is correspondent to the relatively quiescent period observed by HF3AS51,
HF3AS52 and HF3A53, as shown in Figures 30b and 29a. It is surmised that a pocket of cool air or a drop of water
passed over that hot-film gage during that flight time. Or, it could be simply another electronic glitch.

Figures 31 and 32 present the amplitude spectra of hot-film data for the frequency band from 100 Hz up to 5 kHz
or 25 kHz, depending on the preset filter band and the data sampling rates. These spectra generally represent the
broadband turbulent signals with magnitudes increasing with the flight time.

5.8 Dynamic Pressure Data from Three-Dynamic-Pressure Gages

There were two three-dynamic-pressure gages with one each located on the starboard and port sides separately.
Figures 33a, 33b, 34a and 34b present the selected time series of pressure fluctuation data and Figures 35a and 35b
show the variations of their maxima during the flight. All data show peak fluctuations within 5 seconds right after
launch. After that, the pressure fluctuations increase with time until the end of flight. Figures 36 and 37 show the
typical turbulent amplitude spectra processed from the correspondent time series data of Figures 33 and 34.
However, the onboard DSP processed amplitude spectra of these gages, as shown in Figures 38 and 39 only indicate
signals within the frequency band of 100 Hz to 1.5 kHz near the beginning and/or the end of flight. It is suspected
that the onboard DSP data processing had problems.

5.9 Dynamic Data from Other Dynamic Pressure Gages, Freestream Probe and Vibrometer
All onboard processed amplitude spectra of the surface dynamic pressure gages, the freestream dynamic pressure

probe and the embedded vibrometer, as shown in Figures 40, 41, 42 and 43, show the similar questionable spectral
distributions as the three-dynamic-pressure gages. The DSP team is investigating this problem.
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6. Concluding Remarks

Details of the unsuccessful HyBoLT flight experiment are provided, including the objectives and approach
associated with each experimental program, with limited data during the short-life flight. It verifies that most of the
sensors were functioning normally and presented typical turbulent boundary-layer flow signals. Plausible
explanations are provided to explain most of the observed flight data results and abnormalities except that the
behavior of some dynamic data, discussed at the end of last section, is still under investigation. A valuable lesson
learned in this flight experiment is that it is crucial to collect the critical data in various forms for cross-verification.
Doing so provides multiple clues to investigate any abnormal results in post flight data analysis.
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Table 1. Key nominal trajectory points prior to Stage 1 burn-out.

TIME ALTITUDE VELOCITY ANGLE OF REYNOLDS
(s) | MACH (FT) RANGE (NMI) (FT/SEC) | ATTACK (DEG) NUMBER
35.5 3.0 34468 3.7 29613 0.03 7 42E+06
425 4.2 52993 6.3 4063.6 0.03 4326406
49.2 55 76025 9.8 5362.2 0.04 1.85E+06
515 6.0 85599 113 5888.1 2013 1.27E+06
54.0 6.6 96438 13.1 6490.7 017 8.28E+05
56.0 71 106032 14.6 7029.6 20.20 5.66E+05
58.0 75 116359 16.3 7611.9 20.23 3.63E+05
60.0 8.0 127482 18.2 82522 20.27 2.29E+05
62.0 85 139489 20.2 8965.2 20.30 1.42E+05

Table 2. Local edge properties at key trajectory points
for outboard trip station (X=20 Y=0)

Mach | 6 (in) 6% (in) 6(in) | Re/Me | M. Te/Tw
3.0 0.0358 | 0.0135 | 0.0043 | 779.89 | 1.947 [ 1.039
4.2 0.0631 | 0.0208 | 0.0077 | 436.77 | 2.282 | 1.413
5.5 0.1249 | 0.0338 | 0.0153 | 220.66 | 2.548 | 1.982
6.0 0.1542 | 0.0439 | 0.0202 | 169.50 | 2.618 | 2.260
6.5 0.2019 | 0.0563 | 0.0263 | 132.30 | 2.718 | 2.526
7.0 0.2721 | 0.0750 | 0.0341 | 105.99 | 2.849 | 2.765
7.5 0.3475 | 0.1028 | 0.0450 | 80.16 | 2.996 | 3.059
8.0 0.4680 | 0.1514 | 0.0581 | 63.12 | 3.246 | 3.238
8.5 0.5847 | 0.2111 | 0.0714 | 49.52 | 3.526 | 3.362

Table 3. Local edge properties at key trajectory points
for centerline trip station (X=20 Y=4i5).

Mach | 6 (in) 6% (in) 6(in) | Re/Me | M. Te/Tw
3.0 0.0338 | 0.0124 | 0.0039 | 678.31 | 1.996 [ 1.017
4.2 0.0591 | 0.0190 | 0.0072 | 394.63 | 2.300 [ 1.401
5.5 0.1216 | 0.0323 | 0.0146 | 208.73 | 2.560 [ 1.972
6.0 0.1508 | 0.0424 | 0.0195 | 161.33 | 2.632 | 2.247
6.5 0.1973 | 0.0542 | 0.0253 | 125.84 | 2.733 | 2.512
7.0 0.2508 | 0.0699 | 0.0326 | 99.13 | 2.837 | 2.775
7.5 0.3559 | 0.1029 | 0.0438 | 77.65 | 3.036 | 3.013
8.0 0.4680 | 0.1495 | 0.0565 | 60.80 | 3.275 [ 3.200
8.5 0.5767 | 0.2046 | 0.0697 | 47.32 | 3.535 | 3.350
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Table 4. Trip dimensions at key trajectory points for
centerline trip station (X=20 Y=0).

Mach | 4uo(in) | kin/0 | Veay | L(in) | O(Gn) | W(n)

3.0 0.0012 | 0.0346 | 0.0001 | 0.1094 [ 0.0150 | 0.0365

4.2 0.0039 | 0.0618 | 0.0011 | 0.2927 [ 0.0401 | 0.0976

5.5 0.0153 | 0.1224 | 0.0309 | 0.8784 [ 0.1203 | 0.2928

6.0 0.0246 | 0.1593 | 0.0872 | 1.2407 [ 0.1700 | 0.4136

6.5 0.0412 | 0.2041 | 0.2860 | 1.8434 [ 0.2525 | 0.6145

7.0 0.0693 | 0.2547 | 0.9485 | 2.7489 [ 0.3766 | 0.9163

7.5 0.1171 | 0.3368 | 2.9483 | 4.0118 [ 0.5496 | 1.3373

8.0 0.2002 | 0.4278 | 10.0396 | 6.0356 [ 0.8268 | 2.0119

8.5 0.3188 | 0.5452 | 30.4456 | 8.7362 [ 1.1967 | 2.9121

Table 5. Trip dimensions at key trajectory points for
outboard trip station (X=20 Y=+5).

Mach | 4 (in) | kin/d Veaiy | L(in) | D(n) | wi(n)

3.0 0.0013 | 0.0398 0.0001 | 0.1341 | 0.0184 | 0.0447

4.2 0.0040 | 0.0684 0.0016 | 0.3297 | 0.0452 | 0.1099

5.5 0.0157 | 0.1294 0.0387 | 0.9464 | 0.1296 | 0.3155

6.0 0.0252 | 0.1674 0.1071 | 1.3288 | 0.1820 | 0.4299

6.5 0.0423 | 0.2146 0.3518 | 1.9750 | 0.2705 | 0.6583

7.0 0.0683 | 0.2724 1.0376 [ 2.8324 | 0.3880 | 0.9441

7.5 0.1238 | 0.3477 3.9071 | 4.4065 | 0.6036 | 1.4688

8.0 0.2078 | 0.4441 | 12.6137 | 6.5127 | 0.8922 [ 2.1709

8.5 0.3291 | 0.5706 | 37.3981 | 9.3562 | 1.2817 [ 3.1187
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Table 9. Thermocouple reference temperature blocks.

Refeerence Block Connected TC Notes
TRTCO1 TA001 ~ TAO11
TRTCO02 TA012 ~ TA022
TRTCO03 TA023 ~ TA033
TRTCO04 TA034 ~ TA044
TRTCO05 TA045 ~ TA055
TRTCO06 TA056 ~ TA066
TRTCO7 TA067 ~ TAQ77
TRTCO08 TB001 ~ TBO11
TRTCO09 TB012 ~ TB022
TRTC10 TB023 ~ TB033
TRTC11 TB034 ~ TB044 High Ref. Temperature
TRTC12 TB045 ~ TB055 High Ref. Temperature
TRTC13 TB056 ~ TB066
TRTC14 TB067 ~ TBO77
TRTC15 TB078 ~ TBO88 High Ref. Temperature
TRTC16 TB089 ~ TB099 High Ref. Temperature

Table 10. Relationships between measured and computed
differential pressures, and measured static pressures
for angle of attack and angle of yaw.

Angle Measured AP Computed AP
al PAOAO1 DpAOA1 = PSB01 — PSA08
o2 PAOA02 DpAOA2 = PSB02 — PSA09
Bl PYAWO01 DpAQY1 = PSA17 — PSA19
B2 PYAWO02 DpAQY2 = PSA18 — PSA20

Table 11. Relationships between measured and computed
differential pressures, and measured static pressures
for flow angles at boundary-layer pressure rakes.

Angle Measured AP Computed AP
Pa PRSA11 DPRSA = PRSA13 — PRSA12
95 PRSBO1 DPRSB = PRSB02 — PRSB03
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Figure 1. Liftoff of HyBoLT mounted on the ALV X-1 rocket from WFF Launch Pad 0B.

HyBoLT Side A
Aft Module
Booster Adapter
ALV X-1 Launch Vehicle

NASA Wallops Flight Facility

Figure 2. Artistic rendering of HyBoLT during launch from Wallops Flight Facility.
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EVENT TIME, ALTITUDE, RANGE, VELOCITY,
sec nm nm ft/sec |

Stage 1 Burn-out 68 30 27 10,056
Stage 1 Separation 72 34 32 ) el
Stage 2 Ignition 77 40 37 9,884
Stage 2 Burn-out 133 103 113 11,894
HyBoLT Separation 158 131 150 11,455
SOAREX Separation 350 262 424 9,227
Apogee 433 275 538 8,995
Ballistic Impact 806 0 13,429

1
2
B
4
5
6
I
8

T = 12 - g / 600
ach NoO. e - _
SdeA| 30 |7azEe08| | /\ A e
42 | 430E+06 . ; !
SideB| 55 |1.85E+06 —Side B——p» §
80 [229E+05] 8 : 1400 »
S &l : f 1300 £
= |-Side AP/ ! // N 2
41 i {200 2
) i / ;/ —— Mach 100
Angle of attack = 0° - / /E/ E — Altitude 1
Angle Of yaW = 00 0 A—K :\ [ : [ L] E [ E L] .

0
0 20 40 60 80 100 120 140
Time (s)
Figure 4. HyBoLT trajectory points and data criticality window.
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Wind
Vector

Skyward Side
Compression Side

Side A

Groundward Side

Expansion Side
Side B

Velocity
Vector

Ocean/Earth

Figure 5. Trajectory outlook of vehicle orientation.
Umbi-Tower

0 deg

180 deg
Figure 6. Instrumentation coordinate system (Forward looking Aft).
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Figure 7. Side A transition prediction results.
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Figure 8. Side A instrumentation layout.
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2x side pressure ports

Bx leading edge

pressure porls\

0.030 holes
EDM drilled

0.063 holes

leading edge EDM drilled

Tubes torch-
brazed in base

Figure 9. Side A boundary layer pressure rake.

High frequency
pressure transducer

Removable
cover

Ceramic
Insert

Heat sink
fastener b

Instrumentation

pass-through

Figure 10. Side A freestream dynamic pressure probe.
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Top Surface
with three pressure ports

Active
Sensors

Passive
Sensors

Figure 13. Side B roughness elements.
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Figure 14. Side B instrumentation layout.
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Figure 15. Side B instrumentation layout w.r.t. expected turbulent wedges downstream of boundary trips.
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Mach Number

ECI Mach No.
NED Mach No.

ECI Reynolds No. (1/ft)
NED Reynolds No. (1/ft)
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(o]

—

o
)

410°

210°

Flight Time (sec)

Note: ECI stands for Earth Centered Inertial and

NED stands for North East Down for reference systems

Figure 16. Flight Mach number and Reynolds number from ALV data.
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Figure 17. Flight alpha, beta and total alpha from ALYV data.
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Temperature (°F)

Temperature (°F)

-10 -5 0 5 10 15

Flight Time (sec)

Figure 18a. Side A thermocouple data, TA001 — TA009.
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Figure 18b. Side A thermocouple data, TA010 — TA018.
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Figure 18c. Side A thermocouple data, TA019 — TA027.
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Figure 18d. Side A thermocouple data, TA028 — TA036.

35



Temperature (°F)

Temperature (°F)

76

—— TA037

TA038

——— TA039 :
——— TA040

75 | 1a041 A N S o o .

——— TA042 = ; i :

TA043

——— TA044

74 | —— TA045

73

72

L P Y e seal e o T S A et o e

D o B e e

-10 -5 0 5 10 15 20
Flight Time (sec)

Figure 18e. Side A thermocouple data, TA037 — TA045.
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Figure 18f. Side A thermocouple data, TA046 — TA054.
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Figure 18g. Side A thermocouple data, TA055 — TA063.
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Figure 18h. Side A thermocouple data, TA064 — TA072.
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Figure 18i. Side A thermocouple data, TA073 - TA077.
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Figure 19a. Side B thermocouple data, TB001 — TB009.
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Figure 19b. Side B thermocouple data, TB010 — TB018.
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Figure 19c. Side B thermocouple data, TB019 — TB027.
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Figure 19d. Side B thermocouple data, TB028 — TB036.
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Figure 19e. Side B thermocouple data, TB037 — TB045.
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Figure 19f. Side B thermocouple data, TB046 — TB054.
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Figure 19g. Side B thermocouple data, TB055 — TB063.
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Figure 19h. Side B thermocouple data, TB064 — TB072.
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Figure 19i. Side B thermocouple data, TB073 — TB081.
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Figure 19j. Side B thermocouple data, TB0S2 — TB090.
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Figure 19k. Side B thermocouple data, TB091 — TB099.
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Figure 20a. Thermocouple reference temperature data,
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Figure 20b. Thermocouple reference temperature data, TRTC09 — TRTC16.
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Figure 21a. Side A surface static pressure data, starboard side (+Y).
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Figure 21b. Side A surface static pressure data, port side (-Y).
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Figure 22a. Differential pressure data for angle of attack and angle of yaw.
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Figure 22b. Static pressure data for angle of attack and angle of yaw.
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Figure 23a. Side A boundary-layer pressure rake data.
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Figure 23b. Side B boundary-layer pressure rake data.
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Figure 24a. Boundary-layer pressure profile data at 70+5.00s.
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Figure 24b. Boundary-layer pressure profile data at 70+10.00s.
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Figure 24c. Boundary-layer pressure profile data at 70+15.00s.

2.0 ; s | !

——seen| .
— — Side B

T3 R W N W S l

110

05 it

0.0
10 12 14 16

Ptotal (psia)

Figure 24d. Boundary-layer pressure profile data at 70+18.20s.
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Figure 24e. Boundary-layer pressure profile data at 70+20.15s.
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Figure 25. Pressure data of flow angles at boundary-layer pressure rakes.
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Figure 26. Acceleration data from 3-axis accelerometers.
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Figure 27. Surface hot-film DC voltage data.

51

20



AC (volts)

0.8

0.6 70:27585

T0+19.959
-e---- T0+10.100
T0+5.0654

0.4

---+---T0+0.0322

0.2 ff:

Figure 28a. Surface hot-film HF3A11 time series data.
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Figure 28b. Surface hot-film HF3A12 time series data.
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Figure 29a. Surface hot-film HF3A51 time series data.

T T T
T0+20.149
----e-- T0+10.082
TO+5.0490¢ & i i _
T0+2.5324 :
---+---T0+0.0158

50 75 100 125 150

Index

Figure 29b. Surface hot-film HF3A52 time series data.
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Figure 30a. Standard deviations of surface hot-film HF3A1# time series data.
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Figure 30b. Standard deviations of surface hot-film HF3A5# time series data.
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Figure 31a. Amplitude spectra of surface hot-film HF3A11 data.
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Figure 31b. Amplitude spectra of surface hot-film HF3A12 data.
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Figure 31c. Amplitude spectra of surface hot-film HF3A13 data.
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Figure 32a. Amplitude spectra of surface hot-film HF3AS51 data.
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Figure 32b. Amplitude spectra of surface hot-film HF3AS52 data.
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Figure 32c. Amplitude spectra of surface hot-film HF3AS53 data.
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Figure 33a. Three-dynamic-pressure gage P3DA11 time series data.
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Figure 33b. Three-dynamic-pressure gage P3DA12 time series data.
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Figure 34a. Three-dynamic-pressure gage P3DA21 time series data.
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Figure 34b. Three-dynamic-pressure gage P3DA22 time series data.
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Figure 35a. Maximum pressure fluctuations of three-dynamic-pressure gage P3DA1# time series data.
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Figure 35b. Maximum pressure fluctuations of three-dynamic-pressure gage P3DA2# time series data.
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Figure 36a. Amplitude spectra of three-dynamic-pressure gage P3DA11 time series data of Figure 33a.
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Figure 36b. Amplitude spectra of three-dynamic-pressure gage P3DA12 time series data of Figure 33b.
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Figure 37a. Amplitude spectra of three-dynamic-pressure gage P3DA21 time series data of Figure 34a.
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Figure 37b. Amplitude spectra of three-dynamic-pressure gage P3DA22 time series data of Figure 34b.
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Figure 38a. Amplitude spectra of three-dynamic-pressure gage P3DA11 data.
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Figure 38b. Amplitude spectra of three-dynamic-pressure gage P3DA12 data.
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Figure 38c. Amplitude spectra of three-dynamic-pressure gage P3DA13 data.
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Figure 39a. Amplitude spectra of three-dynamic-pressure gage P3DA21 data.

64



1.4

1.2

0.8
Amplitude (psi/Hz)

0.6

0.4 - s
4.38
3.75
0.2
2.5
" 18 Frequency (kHz)
0 ‘ 1.25
E 0.63
z‘ :‘ : % m & -y o~ 1]
LN - R B
« S A A z o md 4o
wn 3 N T N
Flight Time (sec) ~ ~ = 25 @

Figure 39b. Amplitude spectra of three-dynamic-pressure gage P3DA22 data.
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Figure 39c. Amplitude spectra of three-dynamic-pressure gage P3DA23 data.
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Figure 40a. Amplitude spectra of surface dynamic pressure gage PDA01 data.
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Figure 40b. Amplitude spectra of surface dynamic pressure gage PDA(2 data.
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Figure 40c. Amplitude spectra of surface dynamic pressure gage PDA03 data.
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Figure 40d. Amplitude spectra of surface dynamic pressure gage PDA04 data.
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Figure 40e. Amplitude spectra of surface dynamic pressure gage PDA0S data.
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Figure 40f. Amplitude spectra of surface dynamic pressure gage PDA06 data.
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Figure 41a. Amplitude spectra of surface dynamic pressure gage PDA13 data.
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Figure 41b. Amplitude spectra of surface dynamic pressure gage PDA14 data.
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Figure 41c. Amplitude spectra of surface dynamic pressure gage PDA1S5 data.
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Figure 41d. Amplitude spectra of surface dynamic pressure gage PDA16 data.
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Figure 42. Amplitude spectra of freestream dynamic pressure probe PFSD01 data.
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Figure 43. Amplitude spectra of embedded vibrometer VIB1Z data.
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